

Experimento de Vinagre con Bicarbonato en diferentes porcentajes.

Solubilidad: Adicione 5 cc de vinagre y 5 cc de agua. Viértalos en un tubo de ensayo, que sucede, anote. Repita usando alcohol etílico y el vinagre. Son solubles o no?

Calibre el pHmetro usando las soluciones amortiguadoras y al estar ajustado mida el pH del agua del grifo, vinagre, limón, naranja, toronjas, sodas o refrescos.

Registre en la balanza 5 gramos de bicarbonato y lo adiciona al globo. Luego prepare una solución de vinagre al 100 %, 50%, 25% y 10%. A cada % se le adiciona a un Erlenmeyer para colocarle los globos y levantarlos con cuidado. Observe que sucede, escriba la reacción.

Reacción del ácido benzoico con el bicarbonato.

Hidrólisis ácida de ésteres

Hidrólisis básica de ésteres

Figura 1. Mecanismo de reacción de esterificación

Laboratorio nº 8.

Tema: Esterificación.

Logro de Aprendizaje: Identificar un éster por su olor propio y propiedades físicas y químicas.

Introducción:

Marco Teórico:

Referenciado

La esterificación es un proceso de formación de un éster por la combinación de un ácido orgánico carboxílico con un alcohol, con formación de agua (Boyd, 2000).

R—OH + CH₃—COOH ===== CH₃—COOCH₂CH₃ + H₂O (Santillana, Química Orgánica, 2006)

Materiales:

Vaso Químico

Tubo de ensayo

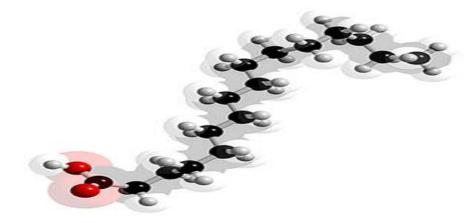
Papel Universal de pH.

Procedimiento:

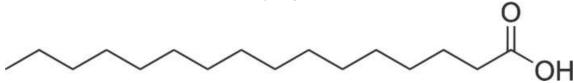
- a- En un tubo de ensayo, mezcle dos cc de metanol con dos cc de ácido acético glacial.
- b- Adicione 2 cc de H₂SO₄ concentrado, con cuidado.
- c- Coloque en baño maría sin llegar a ebullición durante dos minutos.
- d- Enfríe en un baño helado el tubo de ensayo y luego adicione 10 cc de solución salina fría y olfatee su olor. Bingo
- *** El éster formado es acetato de etilo. Es un líquido volátil con olor agradable a frutas. Se emplea como disolvente en la fabricación de barnices, seda artificial, caramelos, bebidas, ... en la obtención de café descafeinado y también es muy conocido como estimulante en desmayos.
- ¿Qué nombre recibe la reacción realizada con cada alcohol utilizado?
- ¿Con qué olor relacionas lo que reconociste?
- ¿Qué función realiza el ácido inorgánico? (Santillana, Química Inorgánica, 2007)
- ¿Qué función realiza la solución salina fría?
- ¿Qué nombre reciben los ésteres formados en el laboratorio?
- ¿Escriba las reacciones que se efectuaron con cada alcohol?
- e- Repetir con etanol, propanol, butanol y glicerina

Bibliografía

Boyd, M. y. (2000). Química Orgánica. México.


Santillana. (2006). *Química Orgánica*. Colombia.

Santillana. (2007). Química Inorgánica. Bogota.



La fórmula molecular del ácido palmítico o ácido hexadecanoico es C $_{16}$ H $_{32}$ O $_{2.}$

Es un sólido blanco, el ácido palmítico es el principal <u>ácido graso</u> saturado de la <u>dieta</u>, constituyendo aproximadamente un 60% de los mismos. Es el más abundante en las carnes y <u>grasas</u> lácteas (<u>mantequilla</u>, <u>queso</u> y <u>nata</u>) y en los <u>aceites vegetales</u> como el <u>aceite de coco</u> y el <u>aceite de palma</u>.

Es el ácido graso menos saludable pues es el que más aumenta los niveles de <u>colesterol</u> en la <u>sangre</u>.

Qm110